APPLICATION OF NONINVASIVE MOLECULAR – BIOLOGICAL METHODS FOR DIAGNOSTICS OF EIMERIOSIS IN DOMESTIC RABBITS (ORYCTOLAGUS CUNICULUS)

Ivelin Vladov1, Valeria Dilcheva1, Veselin Nanev1, Gerogi Stoimenov1,2

1Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria, 2University of Forestry, Faculty of Veterinary Medicine, Sofia, Bulgaria
E-mail: iepparazit@yahoo.com

ABSTRACT

The parasites of the genus Eimeria (Apicomplexa: Eimeriidae) are among the most common in rabbits. We use non-invasive molecular biological methods to determine the species of the genus Eimeria and confirmed the existence of five species in experimental infected domestic rabbits (Oryctolagus cuniculus). We consider that the obtained results could be used for species identification of parasites of the genus Eimeria in mixed populations.

Key words: Eimeria spp., Oryctolagus cuniculus, diagnostic, PCR, ITS

The species of the genus Eimeria (Apicomplexa: Eimeriidae) are the most common parasites in rabbits. In world literature there are described eleven species Eimeria spp. found at domestic rabbits (Oryctolagus cuniculus) with clearly established morphological differences. In our country, we have scarce data about the diversity of species causing eimeriosis in rabbits. There are some studies on Burgas region (Meshkov, 1981, 1982) in which eight types of Eimeria spp. causing coccidiosis in domestic rabbit have been described: E. magna, E. perforans, E. irresidua, E. media, E. stiedai, E. intestinalis, E. piriformis and E. exigua.

In her PhD thesis (Kostova, 1989) after coproscopic examination of 1750 fecal samples from eight different regions in Bulgaria, she determined seven species Eimeria spp. in domestic rabbits by (Levine, 1973), including morphological characteristics as well.

There is some variability in biometric data of the oocysts, which can be explained completely by the effect of various external factors, such as intensity of infection, temperature, diet of the host, the endogenous period for development of the parasite, etc. (E. M. Cheissin, 1967; Milyauskaite & Arnastauskene, 1978). Even though oocyst morphology allows a good differentiation of Eimeria in rabbit, it is practically impossible to evaluate carefully thousands of oocysts just to assess if a given strain is really pure. Moreover, a small portion of oocysts may differ from the typically expected morphology and present a challenge to a correct diagnosis. In addition, all these biological features may present a variable level of overlap, hampering in some cases an accurate Eimeria species identification (Long and Joyner, 1984). The exact identification of the eimeriosis in rabbits is complicated in mixed populations, therefore more accurate species-specific methods for determining species of the genus Eimeria should be applied.

PCR-based molecular methods have been widely used in the diagnosis and characterization of Eimeria spp. (Lew et al., 2003; Oliveira et al., 2011). However, data obtained from regular PCR analyses cannot link species-specific genetic markers with oocyst morphology for species identification due to frequent co-infections of multiple Eimeria species in the same host in the field (Wang et al., 2014)
Internal transcribed spacer (ITS) refers to the DNA segment located between the genes of the small ribosomal subunit RNA and a large ribosomal subunit in the chromosome rRNA. In eukaryotes there are two sections ITS. ITS1 is situated between the 18S rRNA genes and 5.8S. ITS2 unit is between the genes of the 5.8S and 28S rRNA.

A comparison of the ITS region sequences is widely used in taxonomy and molecular phylogeny. This is because it can be easily amplified, even small amounts of DNA, and because there is a high degree of variation even between closely related species.

The species of the genus Eimeria are host species-specific and localization-specific. In most cases they are present in mixed invasion with different pathogenicity.

Oliveira at all. (2011) describe molecular diagnostic methods for the differentiation of the eleven species of Eimeria in domestic rabbits. They determined the nucleotide sequences of ITS1 ribosomal DNA and model species-specific primers for each species, which we used in this study.

Aim

The purpose of this study is to implement new noninvasive molecular-biological methods for an accurate determination of the species from genus Eimeria based on ITS1 region.

To achieve the aim, we used oocysts from naturally infected with Eimeria domestic rabbits.

Material and methods

Parasite collection: Examination of 30 rabbit’s fecal samples and collection of Eimeria spp. were conducted.

Coprological examination: Fecal samples were collected in polyethylene plastic labeled bags, and were examined during the same day of collection by the concentration floatation technique according to (Pritchard, M. H. and Kruse, G. O., 1982) and collected in 2% Potassium dichromate (K2Cr2O7) solution.

Oocysts were mixed very well in water, and incubated at 15-30ºC for 24-120 hours (or 1-5 days). The culture was stirred every day for an aeration.

DNA extraction: The extraction of DNA from oocyst of Eimeria spp. was performed according to (Sambrook J. and Russell D. W. 2001).

Oocysts of Eimeria spp. were put in a sterile mortar and liquid nitrogen was used to disrupt the cells. The oocyst pellets were used in DNA extraction kit (Qiagen, Germany).

Polymerase chain reaction (PCR) assay: The oligonucleotide primers used in this study were selected from highly conserved sequences encoding rRNA, ITS1 sequence of Eimeria spp.

For isolation and purification of the DNA was used solution of GeneJET Genomic DNA Puriﬁcation Kit (Thermo scientiﬁc).

This primer set was used in the PCR assay for partially amplification of the DNA, ITS1 of Eimeria spp.
Table 1: Primers species-specific sequences used for general amplification of the ITS1 from Eimeria spp.

<table>
<thead>
<tr>
<th>Eimeria species</th>
<th>Primer ITS1 Forward</th>
<th>Primer ITS1 Reverse</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eimeria spp. (all species)</td>
<td>GGGAAAGTGGTGAATAGA</td>
<td>CTGCCTCTTTATCGAT</td>
<td>Different for different species</td>
</tr>
<tr>
<td>E. magna</td>
<td>TTTACTTATCACCGAGGTTGATC</td>
<td>CGAGAAAGGTAAAGCTTACCACC</td>
<td>218 bp</td>
</tr>
<tr>
<td>E. coecicola</td>
<td>AGCTTTGTTCTTTATTATTTGAC</td>
<td>CTAGTTGCTTTCAACAAATCCCATCC</td>
<td>256 bp</td>
</tr>
<tr>
<td>E. media</td>
<td>GATTCTTCTCCCTGTCGCC</td>
<td>TTCATACGAAAAAGGTAAAAAGGA</td>
<td>152 bp</td>
</tr>
<tr>
<td>E. exigua</td>
<td>GTAATGTGTCGTTCGATA</td>
<td>TATAGACCCTCCCCAATCCAC</td>
<td>280 bp</td>
</tr>
<tr>
<td>E. perforans</td>
<td>TTTTATTTCTATTCCATTTGAC</td>
<td>CTTTTATACAAAAAGGTCAAGTC</td>
<td>157 bp</td>
</tr>
<tr>
<td>E. flavescens</td>
<td>GAATATTGTTGCAGTTTACCA</td>
<td>CCTCAACAACGGTTCTCATAAC</td>
<td>199 bp</td>
</tr>
<tr>
<td>E. piriformis</td>
<td>AC-GAATACATCCCTCTGCTTACA</td>
<td>ATTGTCTCCCCCGGCACAC</td>
<td>289 bp</td>
</tr>
<tr>
<td>E. intestinalis</td>
<td>GTTTGTGTTACGACCGGGAATA</td>
<td>AAACATTAAAGCTCCCCCTTCTC</td>
<td>241 bp</td>
</tr>
<tr>
<td>E. stiedai</td>
<td>GGTGGTTCTCTGTGCCCCT</td>
<td>AAGGGTGGCTGCTTTGCTTC</td>
<td>217 bp</td>
</tr>
<tr>
<td>E. irresidua</td>
<td>TTGGTTGGAAAGATGATCC</td>
<td>TTGGTATTTTTAAACCCTACA</td>
<td>226 bp</td>
</tr>
<tr>
<td>E. vejlovskyi</td>
<td>GTACTGACCACAAAGGTACC</td>
<td>GCTCATTACATGGGCC</td>
<td>166 bp</td>
</tr>
</tbody>
</table>

PCR reaction was carried out in a total volume of 50 μl containing:

25 μl PCR Master Mix 2x (Thermo scientific) containing, (4 mM MgCl2; 0.4 mM deoxynucleotides triphosphates mixture (dATP, dCTP, dGTP and dTTP);0.05 u/μl thermos aquaticus (Taq) polymerase and reaction buffer;

5 μl of extracted parasite genomic DNA

2 μl for each primers and nuclease-free sterile double distilled water 16μl.

The obtained sample was amplified via precise cycle in Veriti 96 Well Thermal Cycler from Applied Biosystems as follows:

Initial denaturation – 93 ºC for 5 minutes, 40 cycles – 93 ºC for 1 minutes, 56 ºC for 2 minutes and 72 ºC for 2 minute, followed by final extension at 72 ºC for 7 minutes.

The PCR amplification products (amplicons) were visualized: Received PCR amplicons (10 μl) were analyzed by dint of 1 % agarose gel electrophoresis. The DNA bands were visualized via ultraviolet transillumination (SCIE-PLAS Vision) after gel staining with ethidium bromide (0.5 μg/ml). Images were processed and analyzed with software program GelAnalizer 2010a.

Results

In our preliminary studies we used genus-specific primers to detect species from genus Eimeria. In agarose gel we proved the presence of parasites from this taxon.

The presence of two band in agarose gel gives us a reason to suppose that, there are more than one species in the sample, which proves mixed invasion (Fig. 1).
Images of gel-documenting system were made, then they were analyzed by GelAnalyzer2010b. Following log-linear alignment of different columns from the first / weight ladder we differed two separate band in two different samples by 451 and 573 bp. After an alignment of the primers for Eimeria spp. with NCBI Nucleotide fragments we received the following products with base pairs in the last column (Table 1).

Used generic specific ITS1 primers could be used for primordial detection in copro samples from rabbit suspected of eimeriosis or for prevention.

To specify the species distinctly we start the test run with each pair of species-specific primers (Fig. 2).

Molecular biological methods make it easy to determine the species composition in the long and labor-intensive morphometric microscopic techniques. They help to overcome the subjective error or technical reasons based mainly on ITS1 conservative species specific gene sequences. Due
to the accumulation of more and more complete databases of genes in every organism on earth and the increasing interest in these methods, their implementation is becoming more available (both) methodically and economic. Undoubtedly they will impose as obligatory methods to prove the taxonomic identity when making diagnosis or choosing biological models for experiments.

We found five of the total eleven identified species of the genus Eimeria in domestic rabbits. It was confirmed the presence of E. exigua, species with morphometric smallest size, which was not identified by (Kostova, 1989).

There were not confirmed three of the eight morphometric identified species in Bulgaria, probably due to the small number of test animals.

To confirm the molecular biological results, we resorted to the classical histopathological methods.

After the histologic autopsy of the tested animals, we did not find hepatic pathological changes typical for the liver stage of eimeriosis – E. stiedai, which has been confirmed by their absence in the noninvasive molecular biological studies.

Discussion

The method is noninvasive and does not put test animals under stress during the co-sampling.

Through the methods used in this study we were able to confirm the presence of previously identified by (Meshkov, 1981, 1982; Kostova, 1989; Vladov, 2014) Eimeria species in domestic rabbits. We consider that the obtained results could be used for species identification of parasites of the genus Eimeria in mixed populations.

Conclusion

Conducted tests and analyzes would allow detailed studies with high sensitivity and specificity, that contribute to a better understanding of the epidemiology of this important group of parasites of the genus Eimeria.

References